

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) PART-A

Answer all the questions in Part-A (5X2=10M)_

Q.No.		Questions	Marks	CO	KL
1.	a)	Write any three differences between conventional and renewable energy	[2M]	1	
		sources			
	b)	Define collector heat removal factor.	[2M]	2	
	c)	Draw the I-V characteristics of a solar cell.	[2M]	3	
	d)	What is Betz coefficient?	[2M]	4	
	e)	What are the different biomass energy resources	[2M]	5	

PART-B Answer One Question from each UNIT (5X10=50M)

Q.1	No.	Questions	Marks	CO	KL			
UNIT-I								
2.	a)	Distinguish between renewable and non-renewable energy sources.	[5M]	1				
	b)	Explain beam radiation, diffuse and global radiation with the help of neat sketch.	[5M]	1				
OR								
3.	a)	Interpret the reasons for variation in solar radiation reaching the earth than received at the onside of the atmosphere.	[5M]	1				
	b)	Calculate solar radiation on tilted surface.	[5M]	1				
UNIT-II								
4.	a)	What are the main advantages of flat plate solar collector?	[5M]	2				
	b)	Deduce the expression for collector heat-removal factor. List out various	[5M]	2				
		parameters that effect the performance of collector.						
OR								
5.	a)	What is a solar still? Draw its diagram and explain its working in detail.	[5M]	2				
	b)	Draw a schematic diagram of solar pond based electric power plant with cooling tower and explain its working.	[5M]	2				
	•	UNIT-III						
6.	a)	List out various types of Maximum power point techniques. Explain about perturb and observe method.	[5M]	3				
	b)	Draw and explain an equivalent circuit of a practical solar PV cell.	[5M]	3				
OR								
7.	a)	Derive equation for fill factor from the I-V characteristics of a solar cell and explain the significance of it.	[5M]	3				
	b)	Write a short note on sizing of PV system and its storage.	[5M]	3				
UNIT-IV								

Code No: P18EEE01						
8.	a)	Prove that in case horizontal axis wind turbine maximum-power can be	[5M]	4		
		obtained when Exit velocity= $1/3$ wind velocity. $P_{max} = (8/27) \rho A V_i^{-3}$				
	b	Describe environmental impacts of wind energy.	[5M]	4		
OR						
9.	a)	Sketch the diagram of a VAWT and explain the functions of its main	[5M]	4		
		components.				
	b)	Write a technical note on selection of generator for WECS.	[5M]	4		
UNIT-V						
10.	a)	Compare and contrast the biomass and biogas.	[5M]	5		
	b)	Discuss the energy analysis of a hot Aquifer type Geothermal resource.	[5M]	5		
OR						
11.	a)	Describe the principle of working of a fuel cell with reference to H ₂ -O ₂ cell.	[5M]	5		
	b)	Derive kinetic energy equation of a tidal power.	[5M]	5		
